Species historically heavily grazed may have been selected for grazing-resistance traits associated with improved nutrient use efficiency (Chapin and Slack, 1979). Higher root length density (RLD) and vesicular-arbuscular mycorrhizae (VAM) colonization have been associated with greater nutrient acquisition in perennial grasses, thus contributing to competitive ability (Jackson and Caldwell, 1996). This is especially true in unproductive environments where competition for belowground resources is strong (Jackson and Caldwell, 1996). Mycorrhizal fungi can affect competitive interactions among plants by improving soil nutrient uptake (Marschner and Dell, 1994; Mohan et al., 1998). However, lack of or even negative responses have been obtained under increased levels of mycorrhizal colonization (Fitter and Hay, 1983).

Belowground competition is the major form of competition in semiarid and arid environments (Fowler, 1986). Occupation of soil space, which is of primary importance in belowground competition, depends on root characters such as length, which is of primary importance to acquire nutrients (Casper and Jackson, 1997). Species with less root length per soil volume, however, may be more dependent on mycorrhizal colonization for P acquisition than species with greater root length densities (Koide and Li, 1991). Greater root length densities and association with mycorrhizal-forming fungi can contribute to plant nutrient increase. However, these are often alternative strategies for nutrient acquisition by plants (Kothari et al., 1990). Determination of the relative contribution of these mechanisms to plant competitive ability constitutes an interesting and difficult research challenge (Derner and Briske, 1999). Studies of correlations among RLD, VAM colonization, plant biomass, soil P concentration, and concentration of P and N in plant tissues increase our understanding of the integration of plant shoot and root functions (Hetrick et al., 1989).

The role of grazing by domestic livestock must be considered when evaluating strategies that contribute to competitive ability of rangeland vegetation. Factors that reduce photosynthetic capacity will also reduce soil resource acquisition mechanisms because these are dependent upon plant C fixation (Briske and Richards, 1995). Some grazing tolerant, competitive grass species (like Agropyron desertorum; Briske and Richards, 1995) are able to preferentially allocate C to regrowing shoot sinks while curtailing root growth after defoliation which allows for

KEY WORDS / Defoliation / Mycorrhiza / Nitrogen / Phosphorus / Root Length Density / Shoot Growth /
rare photosynthetic canopy re-establishment. In contrast, root growth has remained unabated after defoliation in other grazing sensitive, less competitive grasses (like Pseudotabernera spicata Syn. A. spicatum; Briske and Richards, 1995) thus delaying reestablishment of a shoot/root equilibrium. Fungal simbiotic biomass was doubled in *A. spicatum* and reduced by 50% in *A. desertorum* after severe defoliation (Allen et al., 1989). However, Allsopp (1998) suggested that any defoliation treatment would reduce percentage VAM colonization and external fungal hyphae in grass species with low competitive ability.

Root length density (RLD) and percent VAM colonization were evaluated in this study for *Stipa clarazii*, *S. tenuis* y *S. ambigua* after plants of these species were defoliated or remained undefoliated. These perennial tussock grasses have shown a different response to continuous, long-term grazing in rangelands of central Argentina (Fernández and Busso, 1999). *S. clarazii* is palatable and dominant under exclosure or light grazing conditions (Cano, 1988; Busso, 1997). Fernández and Distel (1999) suggested that *S. clarazii* may have been one of the most abundant species in the herbaceous layer of the pristine vegetation in rangelands of central Argentina. This suggests that *S. clarazii* is a late-successional species (Saint Pierre et al., 2004). Because of selective herbivory, however, this species is replaced by *S. tenuis*, another palatable grass, under continuous, moderate grazing (Busso, 1997). At sites where grazing has been continuous and severe, however, *S. clarazii* and *S. tenuis* have been replaced by undesirable perennial grasses like *S. ambigua*, of earlier successional stages (Giorgetti et al., 1997), which are grazed only when a better forage is not available (Cann, 1988). *S. clarazii* has shown a greater competitive ability and grazing tolerance than *S. tenuis* and *S. ambigua* when root proliferation and dry matter production of these species were determined in plants growing in isolation or in various neighborhoods exposed to different defoliation patterns (Saint Pierre et al., 2004a, 2002; Saint Pierre, 2002). In these studies, a neighborhood consisted of a central plant of one species surrounded by five neighboring plants of a different species. However, mechanisms contributing to its greater competitive ability are largely unexplored.

**Materials and Methods**

**Study site**

The study was conducted within a 2-year exclosure to domestic herbivory during 1998 at the Chacra Experimental de Patagones, south of the Provincia de Buenos Aires (40°39’S, 62°54’W), in the Physiographic Province of El Monte (Fernández and Busso, 1999). The community is characterized by an open shrubby layer, which also includes herbaceous species of different desirability for livestock production (Fernández and Busso, 1999). Dominance of a particular grass species within the herbaceous layer at any site is determined, at least in part, by the previous grazing and fire history of that site (Fernández and Busso, 1999). The tree layer may be composed of occasional individuals of *Prosopis caldenia* Burkart. The soil was classified as a typical haplocalcid with an A horizon having a loamy-clay-sandy texture; 0.20m deep; 16.9g·kg⁻¹ organic C; 28.7ppm available P and 1.231kg·m⁻³ total N. A Bc horizon was found below 0.20m of soil depth followed by a BC horizon between 0.28 and 0.43m of depth. A C horizon existed below 0.43m with very scarce roots. Average pH was 7. Long-term (1901-1950) mean annual values for rainfall were 331mm; 14.6°C for air temperature; -7.6°C (Aug) and 43°C (Jan) for absolute minimum and maximum air temperatures, respectively; 60% for relative humidity and 13km·h⁻¹ for wind speed. Rainfall was 295.6mm in 1998. A meteorological station located at the Chacra Experimental de Patagones provided evapotranspiration and rainfall data during the study period (May to December, 1998; Figure 1).

![Figure 1. Mean monthly evapotranspiration and monthly rainfall during 1998 at a meteorological station located at the study site.](image)

**Treatments and measurements on plants**

A total of 72 plants of *S. clarazii*, *S. tenuis* and *S. ambigua* which had no neighbors within a radius of more than 0.5m were randomly selected. Plant circumference was measured at soil surface. Half of the plants were defoliated to 5cm stubble height on Sept 17 (apical meristems were not removed from the plants) and Oct 12 (apical meristems at the reproductive stage of development were removed), while the other half remained undefoliated (controls). Shoot dry weight production was measured at the time of the defoliation treatments (C, clipping). At the end of the growing cycle, the amount of dry weight produced by undefoliated control plants during the whole study period, and that produced by defoliated plants from the time of treatment to the end of the growing cycle (R, regrowth) were measured. Total dry weight produced by defoliated plants was calculated as C+R. All plant tissues obtained above clipping height were oven-dried at 60°C and then weighed. Current-year live and recently dead material were separated from older, previous-year tissues which had a grey color, weighed and ground to pass a 40-mesh screen. This separation based on leaf color was clear and reliable and it has been reported in several studies on perennial grasses (Busso et al., 2001). Shoot P and N concentrations were determined following Chapman and Pratt (1961) and Nelson and Sommers (1980), respectively.

Three destructive harvests were conducted during spring on the following dates: 6-10 days after the first defoliation (Sept 26), 6-10 days after the second defoliation (Oct 22), and at the end of the growing season (Dec 2). Plants of the first harvest had been defoliated once while those of the second and third harvests had been defoliated twice. Four plants were harvested per species and defoliation treatment on each sam-
TABLE I
MEAN* VALUES FOR THE DIFFERENT MEASUREMENTS MADE IN PLANTS OF S. clarazii, S. tenuis AND S. ambigua WHICH WERE DEFOLIATED OR REMAINED UNDEFO L IATED DURING THE 1998 GROWING SEASON

<table>
<thead>
<tr>
<th>Species</th>
<th>26 Sept</th>
<th>22 Oct</th>
<th>2 Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Undefoliated</td>
<td>Defoliated</td>
<td>Undefoliated</td>
</tr>
<tr>
<td>S. clarazii</td>
<td>0.15±0.03a</td>
<td>0.12±0.02a</td>
<td>0.16±0.09ab</td>
</tr>
<tr>
<td>S. tenuis</td>
<td>0.11±0.02a</td>
<td>0.06±0.01a</td>
<td>0.05±0.01a</td>
</tr>
<tr>
<td>S. ambigua</td>
<td>0.54±0.14b</td>
<td>0.31±0.05b</td>
<td>0.37±0.03b</td>
</tr>
</tbody>
</table>

Regrowth production (g·cm⁻²)

<table>
<thead>
<tr>
<th>Species</th>
<th>0.001 ±0.001a</th>
<th>0.001 ±0.001b</th>
<th>0.001 ±0.001c</th>
<th>0.002 ±0.001b</th>
<th>0.001 ±0.001c</th>
<th>0.002 ±0.001b</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. clarazii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. tenuis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. ambigua</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root length density (cm-cm⁻²)

<table>
<thead>
<tr>
<th>Species</th>
<th>73.7±6.5a</th>
<th>60.6±7.8a</th>
<th>65.0±6.5a</th>
<th>73.7±6.5a</th>
<th>70.6±6.5a</th>
<th>73.7±6.5a</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. clarazii</td>
<td>73.7±6.5a</td>
<td>60.6±7.8a</td>
<td>65.0±6.5a</td>
<td>73.7±6.5a</td>
<td>70.6±6.5a</td>
<td>73.7±6.5a</td>
</tr>
<tr>
<td>S. tenuis</td>
<td>65.0±6.5a</td>
<td>73.7±6.5a</td>
<td>65.0±6.5a</td>
<td>73.7±6.5a</td>
<td>65.0±6.5a</td>
<td>73.7±6.5a</td>
</tr>
<tr>
<td>S. ambigua</td>
<td>65.0±6.5a</td>
<td>73.7±6.5a</td>
<td>65.0±6.5a</td>
<td>73.7±6.5a</td>
<td>65.0±6.5a</td>
<td>73.7±6.5a</td>
</tr>
</tbody>
</table>

% soil P

<table>
<thead>
<tr>
<th>Species</th>
<th>15.9±1.5a</th>
<th>24.3±2.4a</th>
<th>37.0±3.4a</th>
<th>50.6±3.5a</th>
<th>40.6±3.5a</th>
<th>46.2±3.5a</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. clarazii</td>
<td>15.9±1.5a</td>
<td>24.3±2.4a</td>
<td>37.0±3.4a</td>
<td>50.6±3.5a</td>
<td>40.6±3.5a</td>
<td>46.2±3.5a</td>
</tr>
<tr>
<td>S. tenuis</td>
<td>37.0±3.4a</td>
<td>50.6±3.5a</td>
<td>40.6±3.5a</td>
<td>46.2±3.5a</td>
<td>40.6±3.5a</td>
<td>46.2±3.5a</td>
</tr>
<tr>
<td>S. ambigua</td>
<td>37.0±3.4a</td>
<td>50.6±3.5a</td>
<td>40.6±3.5a</td>
<td>46.2±3.5a</td>
<td>40.6±3.5a</td>
<td>46.2±3.5a</td>
</tr>
</tbody>
</table>

% tissue P

<table>
<thead>
<tr>
<th>Species</th>
<th>0.13±0.01a</th>
<th>0.12±0.01a</th>
<th>0.13±0.01a</th>
<th>0.14±0.01a</th>
<th>0.12±0.01a</th>
<th>0.14±0.01a</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. clarazii</td>
<td>0.13±0.01a</td>
<td>0.12±0.01a</td>
<td>0.13±0.01a</td>
<td>0.14±0.01a</td>
<td>0.12±0.01a</td>
<td>0.14±0.01a</td>
</tr>
<tr>
<td>S. tenuis</td>
<td>0.18±0.01h</td>
<td>0.21±0.01b</td>
<td>0.14±0.01a</td>
<td>0.12±0.01a</td>
<td>0.14±0.01a</td>
<td>0.12±0.01a</td>
</tr>
<tr>
<td>S. ambigua</td>
<td>0.08±0.01c</td>
<td>0.17±0.02b</td>
<td>0.08±0.01b</td>
<td>0.12±0.01a</td>
<td>0.12±0.01a</td>
<td>0.12±0.01a</td>
</tr>
</tbody>
</table>

% tissue N

<table>
<thead>
<tr>
<th>Species</th>
<th>1.14±0.05a</th>
<th>1.60±0.08a</th>
<th>1.05±0.10a</th>
<th>1.12±0.14a</th>
<th>1.06±0.17a</th>
<th>1.44±0.17a</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. clarazii</td>
<td>1.14±0.05a</td>
<td>1.60±0.08a</td>
<td>1.05±0.10a</td>
<td>1.12±0.14a</td>
<td>1.06±0.17a</td>
<td>1.44±0.17a</td>
</tr>
<tr>
<td>S. tenuis</td>
<td>1.64±0.07b</td>
<td>1.52±0.05ab</td>
<td>1.05±0.10a</td>
<td>1.12±0.14a</td>
<td>1.06±0.17a</td>
<td>1.44±0.17a</td>
</tr>
<tr>
<td>S. ambigua</td>
<td>0.71±0.06c</td>
<td>1.25±0.13b</td>
<td>0.88±0.16a</td>
<td>1.25±0.16ab</td>
<td>0.79±0.05a</td>
<td>1.42±0.06a</td>
</tr>
</tbody>
</table>

* ±1SE, n=4.
Means within the same column followed by different letters are significantly different (p<0.05).

Results

Dry weight production

Plant basal area was highly variable within and among treatments for all species. Minimum and maximum values were 15.6 and 108.9cm² in S. clarazii, 17.9 and 147.1cm² in S. tenuis, and 30.2 and 357.2cm² in S. ambigua. Differences in plant basal area between any species pair were the result of inherent size variation among species. Because of this, all dry weight production data are reported on a per surface plant basal area basis. The initial biomass (g·cm⁻²) at the first clipping was 0.13±0.028 (mean ±1SE) in S. clarazii, 0.045±0.005 in S. tenuis and 0.304±0.017 in S. ambigua. Total dry weight production was more than 78% greater (p<0.05) on defoliated and undefoliated plants of S. ambigua than on those of the other two species (Tables 1 and II). However, the amount of regrowth was greater (p<0.05).
in *S. clarazii* than in *S. tenuis* and *S. ambiguua*, at the end of the growing season (Table I).

Total dry weight production by undefoliated plants of all three species was greater (p<0.05) for the first and second than the last sampling date (Table I). As a result, total dry weight production of all three species was greater (p<0.05, r=0.84, n=6) in *S. clarazii* and *S. tenuis* than in *S. ambiguua* (Table I). *S. ambiguua* was the species that showed the lowest (p<0.05) tissue P concentrations in comparison to *S. tenuis*, *S. clarazii*, or *S. clarazii* at the first, second or last sampling date, respectively (Tables I and II). Tissue P concentrations were similar (p<0.05) among sampling dates in *S. clarazii* and *S. ambiguua*, and they decreased (p<0.05) as the growing season progressed for *S. tenuis*.

Lack of more consistent associations in relationships between shoot and root variables were similar (p<0.05) in *S. clarazii*, *S. tenuis* and *S. ambiguua* (Table I). When plants remained undefoliated, however, tissue P concentrations were more than 38% lower (p<0.05) in *S. ambiguua* than in *S. clarazii* and *S. tenuis* (Table I). *S. ambiguua* was the species that showed the lowest (p<0.05) tissue P concentrations in comparison to *S. tenuis*, *S. tenuis* and *S. clarazii*, or *S. clarazii* at the first, second or last sampling date, respectively (Tables I and II). Tissue P concentrations were similar (p<0.05) among sampling dates in *S. clarazii* and *S. ambiguua*, and they decreased (p<0.05) as the growing season progressed for *S. tenuis*.

Nitrogen concentrations for plants of all three species defoliated twice were more than 31% greater (p<0.05) than values of undefoliated controls (Tables I and II).

### Root length density and percentage VAM colonization

Root length density was greater (p<0.05) in *S. ambiguua* than in *S. clarazii* and *S. tenuis* (p<0.05) by the end of the growing season (Table I). This parameter was similar (p>0.30) for defoliated and undefoliated plants of all three species (Table I).

Percentage VAM colonization was similar among defoliation treatments (p=0.90, Tables I and II). All three species showed similar (p>0.05) VAM colonization percentages, except at the second sampling date, when this variable was greater (p<0.05) in *S. tenuis* than in *S. clarazii* (Table I). Values for this parameter varied from 61 to 81% in *S. clarazii*, *S. tenuis* and *S. ambiguua* (Table I). Percentages of VAM colonization increased (p<0.05) from the second to the last sampling date in *S. clarazii*, and from the first to the second sampling in *S. tenuis* (Tables I and II).

### Shoot P and N concentrations

Tissue P concentrations were more than 20% greater (p<0.05) on defoliated than on undefoliated plants in *S. clarazii* and *S. ambiguua* (Table I). Tissue P concentrations of defoliated plants were similar (p<0.05) in *S. clarazii*, *S. tenuis* and *S. ambiguua* (Table I). When plants remained undefoliated, however, tissue P concentrations were more than 38% lower (p<0.05) in *S. ambiguua* than in *S. clarazii* and *S. tenuis* (Table I). *S. ambiguua* was the species that showed the lowest (p<0.05) tissue P concentrations in comparison to *S. tenuis*, *S. tenuis* and *S. clarazii*, or *S. clarazii* at the first, second or last sampling date, respectively (Tables I and II). Tissue P concentrations were similar (p<0.05) among sampling dates in *S. clarazii* and *S. ambiguua*, and they decreased (p<0.05) as the growing season progressed for *S. tenuis*.

Nitrogen concentrations for plants of all three species defoliated twice were more than 31% greater (p<0.05) than values of undefoliated controls (Tables I and II).

### Available soil P concentrations

Soil P concentrations increased (p<0.05) when plants of *S. clarazii* and *S. tenuis* were defoliated in comparison to undefoliated controls, and the reverse was true in *S. ambiguua* (Tables I and II). When plants remained undefoliated, soil P concentrations were greater (p<0.05) under shoots of *S. tenuis* and *S. ambiguua* than under those of *S. clarazii*. However, soil under defoliated *S. clarazii* and *S. tenuis* showed higher (p<0.05) P concentrations than that under undefoliated *S. ambiguua* (Tables I and II).

### Relationships between shoot and root variables

Only data demonstrating significant correlations are reported. Lack of more consistent associations in this field study may partly be the result of the small sample size (n=4), which is the minimum for detecting correlations.

Root length density was positively correlated (p<0.05, r=0.63, n=14) with total dry weight production on plants which remained undefoliated or were defoliated twice in *S. tenuis* (Figure 2a). RLD and percentage VAM colonization showed a negative correlation (p<0.05, r=0.72, n=8) in *S. clarazii* plants that were defoliated twice during the growing season (Figure 2b).

Plants of *S. tenuis* that remained undefoliated or were defoliated once showed a positive correlation (p<0.05, r=0.70, n=8) between RLD and tissue P concentration (Figure 2c). A similar response between these two variables (p<0.05, r=0.79, n=8) was obtained on plants of *S. ambiguua* that were defoliated once or twice in the study period (Figure 2d). Tissue N concentrations of *S. clarazii* plants that were defoliated twice (p<0.05, r=0.84, n=6; Figure 2e) and on those of *S. ambiguua* that were defoliated once or twice (p<0.05, r=0.61, n=11; Figure 2d) were positively correlated with RLD.

Percentage VAM colonization and tissue P concentration were positively correlated (p<0.01, r=0.99, n=4) in *S. tenuis* after 6-10 days from the first defoliation (Figure 3a). These plants, however, showed a negative correlation (p<0.05, r=0.95, n=4) between percentage VAM colonization and total dry weight production (Figure 3b). This response was mostly the result of the negative correlation (p=0.01, r=0.91, n=6) between tissue P concentration and total dry weight production.

Available soil P was negatively correlated (p<0.01, r=0.84, n=8) with percentage VAM colonization on defoliated and undefoliated plants of *S. tenuis* at the first sampling date (Figure 4).
was more than 75% of total dry weight and have been attributed to translocation, leaching, oxidation, leaf dropping and seed dissemination (Turner and Klipple, 1952; Pieper, 1978).

Towards the end of the growing season, regrowth production was greater (p<0.05) in S. clareza than in the other two species (Table I). In a parallel study on the same plants, S. clareza showed more than 150% greater relative growth rates and more than 33% greater daughter tiller production than S. tenuis and S. ambigua (Saint Pierre et al., 2000b). Because greater growth rates are positively related to competitive ability (Grime, 1979), our results suggest that S. clareza is a superior competitor when compared to S. tenuis and S. ambigua. Rapid growth rates after defoliation also contribute to herbivory tolerance (Briske and Richards, 1995). Similar to the finding of Anderson and Briske (1995), our study showed that late-seral species can have an either similar or greater herbivory tolerance than earlier-seral species. Selective defoliation of late-seral species, however, would be the dominant mechanism leading to their replacement by earlier-seral species in the community (Anderson and Briske, 1995).

Lack of significant differences in root length density between defoliated and undefoliated plants suggested that photosynthetic canopy reestablishment may be achieved without sacrificing RLD in all three species, at least as long as C reserves do not become limiting. An immediate root growth reduction after defoliation would allow preferential allocation of C resources to regrowing shoots, thus rapidly reestablishing a photosynthetic canopy and returning to a shoot/root equilibrium (Davidson, 1978; Biiske and Richards, 1995). Root growth reductions after defoliation could then be an important determinant of tolerance to herbivory and competitive ability in grass species (Richards, 1984). In our study, RLD and total dry weight production were positively correlated for defoliated and undefoliated plants of S. tenuis (Figure 2a). Root length density also showed positive correlations with tissue N and P concentrations in S. clareza, S. tenuis and S. ambigua (Figure 2e-f). Under local soil nutrient supply conditions, it appeared that root activity must be maintained after defoliation in these species to reestablish a green surface area rapidly and keep resource supply to the plant at equilibrium (Chapin and Slack, 1979). For example, high root densities allowed nutrient exploitation in Schizachyrium scoparium under very low soil nutrient concentrations (Wedin and Tilman, 1993). Past selection pressure on plants and the nature of grazing itself probably contribute to the ability of grasslands to sustain or increase root biomass under defoliation (McNaughton et al., 1998). In particular, it seems likely that a long evolutionary history of co-occurrence of forages and grazers has led to feedback mechanisms that diminish the immediate detrimental effects of defoliation on soil resource acquisition (Michan et al., 1988). Similar to the findings in previous studies (Allen et al., 1989; Busso et al., 2001), defoliation did not affect levels of VAM colonization in S. clareza, S. tenuis or S. ambigua. Apparently, defoliation did not remove sufficient photosynthetic tissue to reduce substrate availability to fungi for sufficient periods to reduce infection rates (Trent et al., 1988). Other workers, however, have reported either decreases or increases in percentage colonization by VAM after defoliation (Bethlenfalvay and Dakeassian, 1984). This plasticity in the response of VAM to defoliation might be a major reason for their persistence and importance in native ecosystems (Allen et al., 1989). Other factors such as water stress, timing of defoliation and species-specific physiological traits can also influence mycorrhizal symbiosis (Allen et al., 1989), and may thus have affected our observed plant responses.

Figure 2. Relationship between root length density and a: total dry weight production of plants of S. tenuis which remained undefoliated or were defoliated twice during the growing season; b: percentage VAM colonization of defoliated plants of S. clareza; c: tissue P concentration of plants of S. tenuis which remained undefoliated or were defoliated once during the growing season; d: tissue P concentration of defoliated plants of S. ambigua; e and f: tissue N concentration of plants of S. clareza which were defoliated twice and of plants of S. ambigua which were defoliated once or twice, respectively. All relationships were significant at p<0.05.

Discussion

Since dry weight accumulated at the time of the first defoliation was more than 75% of total dry weight production of defoliated plants of the three species, initial biomass appeared to be the major determinant of that total dry weight production. Total dry weight did not increase and sometimes decreased with age during spring for undefoliated plants of the three species (Table I). Standing crop declines have been reported in other perennial grasses during the growing season, and have been attributed to translocation, leaching, oxidation, leaf dropping and seed dissemination (Turner and Klipple, 1952; Pieper, 1978).

In a parallel study on the same plants, S. clareza showed more than 150% greater relative growth rates and more than 33% greater daughter tiller production than S. tenuis and S. ambigua (Saint Pierre et al., 2000b). Because greater growth rates are positively related to competitive ability (Grime, 1979), our results suggest that S. clareza is a superior competitor when compared to S. tenuis and S. ambigua. Rapid growth rates after defoliation also contribute to herbivory tolerance (Briske and Richards, 1995). Similar to the findings of Anderson and Briske (1995), our study showed that late-seral species can have an either similar or greater herbivory tolerance than earlier-seral species. Selective defoliation of late-seral species, however, would be the dominant mechanism leading to their replacement by earlier-seral species in the community (Anderson and Briske, 1995).

Lack of significant differences in root length density between defoliated and undefoliated plants suggested that photosynthetic canopy reestablishment may be achieved without sacrificing RLD in all three species, at least as long as C reserves do not become limiting. An immediate root growth reduction after defoliation would allow preferential allocation of C resources to regrowing shoots, thus rapidly reestablishing a photosynthetic canopy and returning to a shoot/root equilibrium (Davidson, 1978; Biiske and Richards, 1995). Root growth reductions after defoliation could then be an important determinant of tolerance to herbivory and competitive ability in grass species (Richards, 1984). In our study, RLD and total dry weight production were positively correlated for defoliated and undefoliated plants of S. tenuis (Figure 2a). Root length density also showed positive correlations with tissue N and P concentrations in S. clareza, S. tenuis and S. ambigua (Figure 2e-f). Under local soil nutrient supply conditions, it appeared that root activity must be maintained after defoliation in these species to reestablish a green surface area rapidly and keep resource supply to the plant at equilibrium (Chapin and Slack, 1979). For example, high root densities allowed nutrient exploitation in Schizachyrium scoparium under very low soil nutrient concentrations (Wedin and Tilman, 1993). Past selection pressure on plants and the nature of grazing itself probably contribute to the ability of grasslands to sustain or increase root biomass under defoliation (McNaughton et al., 1998). In particular, it seems likely that a long evolutionary history of co-occurrence of forages and grazers has led to feedback mechanisms that diminish the immediate detrimental effects of defoliation on soil resource acquisition (Michan et al., 1988).

Similar to the findings in previous studies (Allen et al., 1989; Busso et al., 2001), defoliation did not affect levels of VAM colonization in S. clareza, S. tenuis or S. ambigua. Apparently, defoliation did not remove sufficient photosynthetic tissue to reduce substrate availability to fungi for sufficient periods to reduce infection rates (Trent et al., 1988). Other workers, however, have reported either decreases or increases in percentage colonization by VAM after defoliation (Bethlenfalvay and Dakeassian, 1984). This plasticity in the response of VAM to defoliation might be a major reason for their persistence and importance in native ecosystems (Allen et al., 1989). Other factors such as water stress, timing of defoliation and species-specific physiological traits can also influence mycorrhizal symbiosis (Allen et al., 1989), and may thus have affected our observed plant responses.
Percentages of vesicular-arbuscular mycorrhizal in the three species were similar to values found for other C3 and C4 annual or perennial grasses (Busso et al., 2001). However, our results contrast with studies which report that C3 plants are only weakly dependent on mycorrhizal symbiosis even under low levels of available P in native prairie soils (Hetrick and Tibian, 1993). Fungal hyphae can cause nutrient availability is low on average, and nutrients beyond depletion zones must diffuse towards the roots (Wedin, 1983). Thus, species with high uptake kinetics, and nutrients beyond depletion zones face a disadvantage in these environments because their high C costs associated with construction and maintenance of absorption mechanisms do not translate into higher nutrient absorption (Aerts, 1999). Under these conditions, physiological mechanisms are likely to be less important than morphological mechanisms or those related to a greater exploration of the soil volume (Jackson and Caldwell, 1996). This may be one explanation for the high VAM colonization percentages in all three C3 perennial grass species.

Shoot nutrient concentrations were greater for defoliated than undefoliated plants of all three species (Table I). It has been widely reported that concentrations of P and N are higher in younger than older plant tissues (Mengel and Kirkby, 1982). Undefoliated plants of the unpalatable S. ambigua showed the lowest P and N concentrations in comparison to S. clarazii and S. tenuis (Table I). Other studies have already reported lower nutrient concentrations in unpalatable than in palatable perennial grasses (Cano, 1988; Wedin, 1993). Poorer litter quality in the unpalatable grasses may reduce nutrient turnover and soil nutrient availability (Berendse, 1994; Wedin, 1995). In agreement with these findings, soil under defoliated S. clarazii and S. tenuis canopies had greater available P concentrations than under S. ambigua canopies (Table I). Greater nutrient uptake rates on undefoliated plants of S. clarazii than on those of S. tenuis and S. ambigua (Giorgetti et al., 2000), however, may help explain the lower available soil P concentrations under S. clarazii than under S. tenuis and S. ambigua canopies when plants remained undefoliated.

Mycorrhizal dependency appears to be negatively related to root parameters such as root length and surface area at least for P uptake (Kothari et al., 1990). The negative correlation between percentage VAM colonization and root length density on plants of S. clarazii defoliated twice (Figure 2b) could represent a mechanism that allows this species to reduce C loss to the fungal symbiont when nutrient supply to the plant is adequate. Total length of the root system was reduced on plants of Schizachyrium scoparium after it was colonized by VAM (Anderson and Liberta, 1992). Similarly, Kothari et al. (1990) found that the most profound effect of VA mycorrhizal fungi in Zea mays was on root growth and morphology; root dry weight decreased by 16%, root length by 31% and root hair density and length by 41 and 43%, respectively.

There was a negative correlation between percentage VAM colonization and the P content of soil mycorrhizal association may not result in enhanced plant growth (Anderson and Liberta, 1992). However, several authors have reported that tissue P concentration of the host plant can also control VAM colonization levels (Tawaraya et al., 1994). As a result, the inhibition mechanism of VAM colonization because of the P content in the plant-soil system has not yet been fully documented (Tawaraya et al., 1996). It has even been suggested that depression of VAM colonization under high soil P contents is influenced by soil N availability (Marschner and Dell, 1994).

Except on plants of S. tenuis defoliated once, where percentage of VAM colonization and tissue P concentration showed a positive relationship (Figure 3a), percentages of VAM colonization did not correlate with shoot N or P concentrations in any other treatment. The negative correlation between tissue P concentration and total dry weight production in S. tenuis most likely reflected a dilution effect resulting from dry weight increases (Mengel and Kirby, 1982). Experiments carried out in the field or under controlled environmental conditions have shown that mycorrhizal plants of several perennial grass species accumulated more P or N and/or had greater P or N concentrations than their non-mycorrhizal counterparts (Call and Davies, 1988; Hetrick et al., 1993; Trent et al., 1993; Noyd et al., 1995). However, mycorrhizal and non-mycorrhizal plants of Bromus inermis had similar total P concentrations (Hetrick et al., 1994).

Greater growth production in the more grazing tolerant and competitive species, S. clarazii, than in the less grazing tolerant and competitive S. tenuis and S. ambigua could not be explained by a greater RLD or percentage...
VAM colonization in our study. These variables were similar on defoliated and undefoliated plants in all three species. Saint Pierre et al. (2002) reported that both greater root length and dry weight increases S. clareae after defoliation appear determinant in contributing to explain its greater competitive ability and defoliation tolerance when compared with the other two species.

REFERENCES


cies de gramíneas nativas del Sur de la Provincia Fitogeográfica del Monte. XVI Reunión Latinoamericana de Producción Animal, III Congreso Uruguayo de Producción Animal, Montevideo, Uruguay.


